

INL/EXT-12-27171

SHARP/PRONGHORN
Interoperability: Mesh
Generation

Avery Bingham
Javier Ortensi
Rajeev Jain
Iulian Grindeanu
Tim Tautges

September 2012

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/EXT-12-27171

SHARP/PRONGHORN Interoperability: Mesh
Generation

INL: Avery Bingham and Javier Ortensi
ANL: Rajeev Jain, Iulian Grindeanu, and Tim Tautges

September 2012

Idaho National Laboratory
VHTR Program

Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

 vii

SUMMARY

Progress toward collaboration between the SHARP and MOOSE
computational frameworks has been demonstrated through sharing of mesh
generation and ensuring mesh compatibility of both tools with MeshKit. MeshKit
was used to build a three-dimensional, full-core very high temperature reactor
(VHTR) geometry with 120-degree symmetry, which was used to solve a neutron
diffusion critical eigenvalue problem in PRONGHORN. PRONGHORN is an
application of MOOSE that is capable of solving coupled neutron diffusion, heat
conduction, and homogenized flow problems. The results were compared to a
solution found on a 120-degree, reflected, three-dimensional VHTR mesh
geometry generated by PRONGHORN. The ability to exchange compatible mesh
geometries between the two codes is instrumental for future collaboration and
interoperability. The results were found to be in good agreement between the two
meshes, thus demonstrating the compatibility of the SHARP and MOOSE
frameworks. This outcome makes future collaboration possible.

 viii

 ix

CONTENTS

SUMMARY .. vii�

1.� INTRODUCTION .. 1�

2.� OBJECTIVE ... 2�

3.� SHARP DESCRIPTION .. 2�

4.� MESHKIT DESCRIPTION ... 3�

5.� PRONGHORN DESCRIPTION .. 3�
5.1� Numerical Method: Jacobian-free Newton-Krylov .. 3�
5.2� Mathematical Model for Core Neutronics ... 4�
5.3� Finite Element Discretization of Physics ... 5�
5.4� Compatible Mesh Generation .. 6�

6.� RESULTS ... 7�

7.� CONCLUSIONS .. 9�

8.� FUTURE WORK ... 9�

9.� ACKNOWLEDGEMENTS ... 10�

10.� REFERENCES ... 10�

FIGURES

Figure 1. Core radial layout, fuel shown in red and orange. ... 6�

Figure 2. Base mesh generated by MeshKit (left) and PRONGHORN (right). .. 7�

Figure 3. Whole core thermal (left) and fast (right) flux solutions. .. 8�

Figure 4. One third core thermal (right) and fast (left) flux solutions. ... 9�

TABLES

Table 1. Axial core layers. .. 7�

Table 2. Comparison of results from Idaho National Laboratory and Argonne National
Laboratory-generated mesh run with PRONGHORN. ... 8�

 x

ACRONYMS

ANL Argonne National Laboratory

INL Idaho National Laboratory

JFNK Jacobian Free Newton Krylov

MOAB mesh-oriented database

MOOSE Multi-Physics Object-Oriented Simulation Environment

PMR prismatic modular reactor

SHARP Simulation-based High-efficiency Advanced Reactor Prototyping

VHTR very high temperature reactor

 1

SHARP/PRONGHORN Interoperability:
Mesh Generation
1. INTRODUCTION

The computational analysis of complex physical systems (such as nuclear reactors) requires the
ability to solve the behavior of several different physical phenomena (such as neutron transport, heat
transfer, fluid flow, and thermal expansion) and to compute interactions among these physical
phenomena. The goal of developing a computational framework capable of complex multiphysics
analysis has been pursued independently at Argonne National Laboratory (ANL) and Idaho National
Laboratory (INL). Essentially, there are two approaches to achieve this goal: (1) build a framework that
can be used as an interface for existing codes, or (2) develop an application environment framework in
which new physics could be added and coupled in a highly integrated fashion.

Historically, physics codes have been written to solve for a single physical phenomena such as
neutron transport. Many of these codes have years, if not decades, of development and have been
validated against experiments or verified against other codes. The Simulation-based High-efficiency
Advanced Reactor Prototyping (SHARP) computational framework has managed to leverage existing
codes as modules and provides the interface for communicating data among a number of separate physics
solvers. Coupling independent codes is not new; however, the SHARP project has greatly reduced the
difficulty associated with the coupling of separate physics solvers for reactor simulation.

In the Multiphyiscs Object-Oriented Simulation Environment (MOOSE) framework a different approach
is taken. Selection of a mathematical model or set of governing equations is a task left to the scientist and
can be adapted specifically to individual needs. Translating a mathematical formulation into an efficient
computer program can be challenging. However, MOOSE provides a simple and flexible interface that
allows for rapid formulation of mathematical models into code that is inherently parallel and portable
from desktop machines to high-performance computers. MOOSE functions as a software library, which
interfaces user-controlled physics applications with numerical libraries such as PETSc, while treatment of
the mesh is handled by the libMesh library.

In MOOSE, a system of partial differential equations is solved using the Jacobian Free Newton Krylov
(JFNK) method. Separate physics processes are encapsulated into kernels with each kernel responsible for
evaluating its portion of the nonlinear residual and the preconditioning matrix or approximate Jacobian.
Each kernel is implemented separately in order to provide flexibility to test different combinations of
physics. By structuring the code this way, models of physical phenomena can be rapidly turned into code.
This approach allows the scientist to test new models quickly while focusing on the physics being
modeled.

One application of MOOSE called PRONGHORN is a tightly coupled multiphysics application code,
which is capable of fully implicit calculations for analysis of nuclear reactors. Even though current
development is focused on the analysis of very high temperature reactors (VHTR) (both pebble bed and
prismatic core concepts), the scope of the code can be expanded to other reactor designs.

Code-to-code solution comparisons are simplified when code systems use the same or similar meshes.
In this way, results from an ANL tool such as SHARP can be easily compared to or integrated with tools
like INL’s PRONGHORN. MOOSE does have some limited mesh generation capabilities, but it relies on
separate applications such as Cubit for complex mesh generation. There are various tools available that
can generate the geometry and associated mesh. MeshKit is one such tool that was developed as a module
under the SHARP project at ANL. MeshKit is now offered as an open-source toolkit for mesh generation.
The first step for interoperability between SHARP and PRONGHORN is to demonstrate the ability to

 2

operate on the same mesh. This report is primarily concerned with compatible mesh preparation between
the two computational frameworks on similar representative geometries. Differences in the mathematical
models and numerical solvers will not be dealt with extensively at this time.

2. OBJECTIVE
The primary purpose of this work is to show the interoperability of the meshing tools in MeshKit with

the MOOSE computational framework in use at INL and, specifically, with the PRONGHORN
application. The task has three benefits: (1) utilization of work already performed within the Department
of Energy system, (2) simplification of the geometric modeling and the preparation analysis meshes for
reactor applications at INL, and (3) allowance of future use of SHARP in comparison with INL tools on
the same computational mesh.

Building a VHTR geometry mesh with MeshKit and solving the full-core neutron diffusion problem
in PRONGHORN will satisfy the first steps toward code interoperability. Verification of the results will
be carried by comparing the results with the new MeshKit mesh to previous results obtained with a mesh
developed at INL.

Finally, installation of MeshKit on the INL High-Performance Computing cluster makes it available
for future use with MOOSE-based applications.

3. SHARP DESCRIPTION
SHARP is a reactor simulation system developed by ANL as part of the U.S. Department of Energy

Nuclear Energy Advanced Modeling and Simulation Program. It serves is a suite of physics simulation
software modules and computational framework components that enables the user to evaluate
performance and safety characteristics of nuclear reactors and their components. Essentially, SHARP
models the physical processes that occur in a nuclear reactor core. The physics modeled include neutron
transport with the PROTEUS suite of codes, thermal fluids with codes such as Nek5000 and Star CCM+,
and other assorted physics such as fuel and structure behavior.

SHARP is a weakly coupled framework that builds on existing computer codes. SHARP allows users
to attach new simulation modules to these older legacy codes, which avoids significant rewriting of code.
Solutions found by the various physics codes must share data through a coordinated interface. This
interface in SHARP is provided by the Mesh-Oriented Database (MOAB). MOAB is a library for
representing unstructured and structured mesh and field data on a mesh. This interface allows for
multi-resolution solutions, meaning low-dimension, plant-scale solvers can be informed by solutions from
high-fidelity models. In addition, it allows for different physics to be modeled on separate mesh but
enables them to share solution data. MOAB implements the Interoperable Technologies for Advanced
Petascale Simulations iMesh interface. iMesh is a common interface to mesh data implemented by several
different packages, including MOAB. Various tools (such as smoothing, adaptive mesh refinement, and
parallel mesh communication) are implemented on top of iMesh. MOAB supports common parallel mesh
operations such as parallel import and export (to/from a single HDF5-based file), parallel ghost exchange,
communication of field data, and general sending and receiving of mesh and metadata between
processors.

MeshKit is a module of SHARP in development at ANL, which is designed to facilitate generation of
nuclear reactor geometries and the associated mesh.

 3

4. MESHKIT DESCRIPTION
Nuclear reactor geometry can often be described as having a two-level hierarchy of lattices; the first

level of the hierarchy corresponds to fuel assemblies, formed as a lattice of cylindrical pins or compacts,
while in the second level, assemblies of various types are arranged in a lattice to form the reactor core.
These pins typically contain uranium-based fuel, absorbing material for controlling the nuclear chain
reaction, or instrumentation. The surrounding materials can function as coolant, a neutron energy
moderator, or simply supporting structure. These materials are typically arranged in either a rectangular
lattice for water-cooled reactors, or a hexagonal lattice for sodium and gas-cooled reactors. Assemblies
vary by degree of uranium enrichment in the fuel material, type of control rod material, or other
parameters.

Generation of geometry and mesh models for reactor cores can be a difficult process. Advantage can
be taken of the structure inherent in this two-level hierarchy to automate much of the generation process,
which can be augmented by user interaction at key points. MeshKit seeks to be the ideal geometry and
mesh generation tool by attempting to balance both lattice-guided automation and allow opportunities for
user interaction at key points in the process. Based on a small set of parameters, geometry and mesh are
constructed for a variety of reactor core types arranged as both square and hexagonal lattices. MeshKit
also has general mesh manipulation and generation functions such as copy, move, rotate, and extrude. In
addition, new quad mesh and embedded boundary Cartesian mesh algorithms have been developed and
can interface with several public-domain tetrahedral meshing algorithms (e.g., Gmsh and netgen).

5. PRONGHORN DESCRIPTION
PRONGHORN is a multiphysics reactor analysis application of MOOSE. PRONGHORN was

initially developed at INL to model the pebble bed gas-cooled reactor using a two-group neutron diffusion
model and a porous media flow model. Recent development in PRONGHORN has extended the neutron
diffusion model to an arbitrary number of groups and extended the thermal fluid model to better capture
the physics in prismatic VHTR. Just like all MOOSE application, problems are solved using the JFNK
method. PRONGHORN can be run in serial or on massively parallel computers with one-, two-, three-,
or axisymmetric RZ-geometry.

Current capabilities of PRONGHORN include solving steady-state and transient–coupled,
homogenized, fluid flow-heat transfer problems and standard multigroup diffusion problems (fixed-
source, criticality, and time-dependent). For the purpose of demonstrating the compatibility of meshes
generated from MeshKit, the physics solved in this report will be limited to the k-eigenvalue calculation
using the neutron diffusion approximation.

5.1 Numerical Method: Jacobian-free Newton-Krylov
The JFNK method is used to solve nonlinear systems of equations. JFNK is a combination of the

Newton and Krylov methods. This method enables an algorithm to retain the quadratic convergence rate
without forming a complicated Jacobian matrix typically required by the Newton method. In general, a
nonlinear partial differential equation (PDE) can be written in the form:

F(U) � 0

where F is the nonlinear residual function and Ua vector of independent variables, respectively. The

first-order Taylor expansion about the previous iterate, U k
, can be expressed as

F(U) � F(U k)� �F
�U Uk

(U �U k) � 0,

 4

which can be arranged into a linear system

J�U k � �F(U k)

where

J � �F
�U

.

The Jacobian matrix, J, is difficult or impossible to compute analytically for complex multiphysics
problems. The linear system above is solved using a Krylov method (typically GMRES) and the solution
is updated as

U k�1 �U k � d�U
where d is a scalar damping parameter 0 � d �1, which is found using an optimization algorithm (line
search or trust region) to minimize the residual. JFNK takes an advantage of the fact that a Krylov method
merely requires a matrix-vector product, not the matrix itself, and that the following finite difference form
can approximate the matrix-vector product as

Jv � F(U �hv)�F(U)
h

,

where h is a perturbation parameters. To solve the linear system efficiently, we must apply
preconditioning. The preconditioning matrix M is often created by choice of linearization. The
right-preconditioned system can be written as

JM �1M�U k � �F(U k).
The matrix-vector product for the (right) preconditioned system becomes

JM �1v � F(U � hM �1v)�F(U)
h

.

One can approximate the matrix-vector product with the following two steps:

1. y � M �1v

2. ,)()(
h

UFhyUFJy ��
�

Therefore, preconditioned Krylov iterations require the additional operation of Step 1. We choose the
preconditioning matrix to be a simpler form of the original Jacobian matrix J (typically the main
diagonal of the Jacobian matrix). Therefore, the explicit form of the Jacobian matrix is not required to
solve the preconditioned system.

5.2 Mathematical Model for Core Neutronics
The governing equation for the k-eigenvalue calculation using the diffusion approximation for energy

group g out of G total groups is the following:

�	
Dg	�g ��r,g�g � �s
g '
g�g '

g '
g '�g

G

� � 1
keff

� g 'g�g '� f ,g '�g '
g '�1

G

� g �1, 2,...,G

 5

where each quantity is dependent on
�r and are defined as follows:

Dg = the neutron diffusion coefficient cm� �

�g = the neutron flux
neutrons

cm2s
�
��

�
��

�r,g = the macroscopic removal cross section cm�1�� ��

keff = the critical eigenvalue or multiplication factor

� g 'g = fission neutron yield into neutron energy group g caused by a neutron in group g '

�g ' = number of neutrons per fission caused by a neutron in group g '

� fg = the macroscopic fission cross section cm�1�� ��.

In PRONGHORN, the critical eigenvalue is first updated with a few iterations analogous to the power
method to ensure the flux solution is within the Newton method convergence radius. We complete these
“power method” steps by using the JFNK method to solve for the flux just as one would normally use
inner iterations to update the source, and the eigenvalue is only updated at each nonlinear or Newton step.
Once a few “power method” iterations are completed, the nonlinear eigenvalue solver takes advantage of
the JFNK method by allowing the flux solution and the critical eigenvalue to be updated during the linear
residual evaluations of the Krylov solver accelerating the eigenvalue problem.

5.3 Finite Element Discretization of Physics
In this section, we discuss spatial discretization of the neutron diffusion equation. Most often a linear

finite element discretization would be applied. To derive the weak formulation, the governing equation is
multiplied by a test function � and integrated over the volume. The weak form for group g of the neutron
diffusion k-eigenvalue problem can be written as

F(�g) � 	�
Dg	�g dV
V
� � �Dg	�g

�n ds
�
� � ��r,g�g dV

V
�

� � �s
g '
g�g '

g '
g '�g

G

�
V
� dV � 1

keff

� � g 'g� g '� f ,g '�g '
g '�1

G

�
V
� dV

 .

The final step finite element in discretization is to approximate �g as the following:

�g � �g,h � �g,ibi
i�1

N

�

where �g,iis the value of the flux at the ith local node and bi is the basis function that is zero at all nodes
but one. There are many choices for the test and basis functions. Here the Galerkin Method is used, which
means that our test function is taken from the same space as our basis function. The basis functions are
typically first or second order Lagrange polynomials.

 6

5.4 Compatible Mesh Generation
MeshKit was used to generate the 120-degree, symmetric, full-core mesh of a VHTR. Generating this

mesh directly with Cubit would have been quite time consuming and currently is not included in
PRONGHORN’s mesh generation capability. Construction of the one-third core mesh was done using
PRONHORN’s built-in capability. Both core models are of a simplified version of the Modular High
Temperature Gas-cooled Reactor (MHTGR) reactor design. The model includes 660 homogenized
prismatic fuel blocks that are arrayed in 10 layers that form an annular ring in a hexagonal lattice. The
blocks have a hexagonal pitch of 36 cm. Figure 1 shows the radial layout of the fuel.

Figure 1. Core radial layout, fuel shown in red and orange.

The permanent reflector is approximated with the additional rings of hexagonal graphite blocks.
Reflector blocks are modeled above and below the active core region, which is composed of 14 layers.
The height of each layer is included in Table 1. The fuel is located in layers 3 through 12. The base mesh
generated by MeshKit and PRONGHORN are presented in Figure 2.

 7

Table 1. Axial core layers.

Figure 2. Base mesh generated by MeshKit (left) and PRONGHORN (right).

6. RESULTS
A two-group diffusion approximation using condensed cross-sections from the 26-group MHTGR

benchmark problem was used to test the meshes. The meshes were spatially refined to achieve a spatially
converged solution of approximately 10 pcm (per cent mili). The full convergence results are presented in
Table 2.

 8

Table 2. Comparison of results from Idaho National Laboratory and Argonne National Laboratory-
generated mesh run with PRONGHORN.

Uniform
Refinement

One-Third Core Mesh (INL) Whole Core Mesh (ANL) pcm Difference
Keff dofs Keff dofs (ANL-INL)/ANL*1e5

Base mesh 0.97084 1.42E+05 0.97188 1.06E+06 107.0
1 0.96948 1.09E+06 0.97001 8.50E+06 54.6
2 0.96914 8.34E+06 0.96942 6.80E+07 28.9
3 0.96906 6.40E+07 0.96922 5.44E+08 16.5

The results demonstrate mesh compatibility between the MOOSE and SHARP frameworks.

PRONGHORN was able to converge to the same solution for meshes generated by either MeshKit or
PRONGHORN. The thermal and fast flux solutions for the full core model are shown in Figure 3. The
thermal and fast flux solutions for the one-third core are shown in Figure 4.

Figure 3. Whole core thermal (left) and fast (right) flux solutions.

 9

Figure 4. One third core thermal (right) and fast (left) flux solutions.

7. CONCLUSIONS
Although this work is very preliminary, we have demonstrated that interoperability between MOOSE

and SHARP is possible. The PRONGHORN application is able to solve a complex problem on a mesh
generated from MeshKit, requiring very little additional work. Some minimal programming was required
to map block IDs in the mesh to material IDs used by PRONGHORN to assign cross sections. Further
collaboration between INL and ANL should be pursued to take advantage of the capabilities already
included in SHARP.

8. FUTURE WORK
Because SHARP can use high-fidelity solvers such as UNIC and Star-CCM+, we recommend using

SHARP to generate reference solutions for the simplified coupled neutronics and thermal fluid model in
PRONGHORN. SHARP could then be used to produce initial conditions for reactor transient calculations
run in PRONGHORN. Additionally, there is the possibility of using the cross-section generation from
MC2-3, a module of SHARP, to conduct transient runs in PRONGHORN at different depletion states.

It might be advisable to incorporate MOOSE with the SHARP frameworks. This action would
maximize the advantage of both approaches to computational analysis of multiphysics systems.
Applications in MOOSE could interact with existing codes in loosely coupled manner using the SHARP
framework. Additionally, the scientist would be able to use MOOSE to develop new capabilities or to
interact with existing applications in the MOOSE environment.

The current released version of MeshKit is built on the CGM library, which is only compatible with
Cubit up to 12.2. We recommend future development of MeshKit to be compatible with the newer Cubit
version (currently 13.2). Additionally, we recommend training of INL personnel in use of MeshKit and
other SHARP applications.

 10

9. ACKNOWLEDGEMENTS
The calculations in this report were performed with PRONGHORN, a parallel neutronics solver
developed by INL using a mesh generated by MeshKit that was developed at ANL under the Nuclear
Energy Advanced Modeling and Simulation Program. This research used resources of INL, which was
supported by the U.S. Department of Energy, Assistant Secretary for the Office of Nuclear Energy, under
DOE Idaho Operations Office Contract DE-AC07-05ID14517.

10. REFERENCES
Balay, S., K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.

Smith, and H. Zhang, 2004, “PETSc users manual,” Tech. Rep. ANL-95/11, Revision 2.1.5, Argonne
National Laboratory.

Gaston, D., C. Newman, G. Hansen, and D. Lebrun-Grandie, 2009, “MOOSE: A parallel computational
framework for coupled systems of nonlinear equations,” Nucl. Eng. Design, Vol. 239, pp. 1768–1778.

Jain, R. and T. J. Tautges, 2012, “RGG: Reactor Geometry (and Mesh) Generator,” Proceedings of
ICAPP ’12, Chicago, USA, June 24–28, 2012.

Kirk, B. S., J. W. Peterson, R. H. Stogner, and G. F. Carey, 2006, “libMesh: a C++ library for parallel
adaptive mesh refinement/coarsening simu- lations,” Eng Comput-Germany, Vol. 22, pp. 237–254.

Ortensi, J. et al., 2012, “Prismatic Coupled Neutronics Thermal Fluids Transient Benchmark of the
MHTGR-350 MW Core Design,” released April 1, 2012.

Park, H., D. A. Knoll, D. R. Gaston, and R. C. Martineau, 2010, “Tightly coupled multiphysics
algorithms for pebble bed reactors,” Nuclear Science and Engineering, Vol. 166, No. 2, pp. 118–133.

Tautges, T. J. and R. Jain, 2010, “Creating Geometry and Mesh Models for Nuclear Reactor Core
Geometries Using a Lattice Hierarchy-Based Approach,” Proceedings of the 19th International
Meshing Roundtable.

